

$\beta^{2,2}$ -Aminoxy Acids: A New Building Block for Turns and Helices

Dan Yang,* Yu-Hui Zhang, and Nian-Yong Zhu

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Received May 20, 2002

After the intensive research on β -peptides,^{1,2} γ -peptides have been found to form stable and well-defined secondary structures such as turns, helices, or sheets. Hanessian et al. and Seebach et al. discovered that γ^4 -peptides, $\gamma^{2,4}$ -peptides, or $\gamma^{2,3,4}$ -peptides formed stable 2.6₁₄ helices with as few as four residues in solution³⁻⁸ and solid state,⁶ and that other $\gamma^{2,4}$ -peptides preferred a reverse turn structure.^{5,9} Schreiber et al. found both parallel and antiparallel sheet structures in γ -peptides consisting of α,β -unsaturated γ -amino acids.¹⁰ More recently, Smith and Gellman reported another parallel sheet structure in γ -peptides of *trans*-3-aminocyclopentanecarboxylic acid.¹¹ We have been interested in the secondary structures of peptides composed of β -aminoxy acids, a novel class of γ -amino acid analogues in which the γ -carbon is replaced with an oxygen. Here we report $\beta^{2,2}$ -aminoxy acids, a subclass of β -aminoxy acids with two side chains on the α -carbon, as a new building block for turns and helices.

We previously reported that α -aminoxy acids induced N–O turn structures involving a strong eight-membered-ring intramolecular hydrogen bond,¹² and that the homochiral oligomers of D- α -aminoxy acids adopted a right-handed 1.8₈ helix consisting of consecutive N–O turns.¹³ Compared with α -aminoxy acids, β -aminoxy acids have an extra carbon atom in the backbones, and thus it is interesting to investigate whether the intramolecular hydrogen bond between adjacent residues can be retained.

Diamides 1, 2 and triamides 3 and 4, all consisting of 3-aminoxy-2,2-dimethyl-propionic acid (a $\beta^{2,2}$ -aminoxy acid), were synthesized

Table 1.	Chemical Shifts of the Amide NHs of 1-4 (1.56 mM in
CDCl ₃ at	Room Temperature)

-	• •		
	NH _a (ppm)	NH _b (ppm)	$\rm NH_c$ (ppm)
1			7.10 (t)
2	8.52 (s)		7.85 (t)
3		10.29 (s)	7.82 (d)
4	8.55 (s)	11.74 (s)	7.92 (d)

following standard methods of peptide coupling.14 Table 1 summarizes the chemical shifts of the amide protons of 1-4 (1.56 mM in CDCl₃) at room temperature. The *N*-oxy amide NH_b of **3** and regular amides NH_c of 1-3 appeared unusually downfield and showed little change ($\Delta \delta = 0.02 - 0.60$ ppm) when the solutions were diluted from 200 to 1.56 mM in CDCl₃, or when DMSO- d_6 was added gradually to a 5 mM solution of 1-3 in CDCl₃.¹⁴ In contrast, the signal of N-oxy amide NHa of 2 was found rather upfield and changed dramatically ($\Delta \delta = 1.18 - 1.96$ ppm) upon dilution in CDCl₃ or DMSO-d₆ addition.¹⁴ The ¹H NMR dilution studies could not be performed for triamide 4 because of its poor solubility in CDCl₃. Nevertheless, the chemical shifts of its amide protons NH_b and NH_c at 1.56 mM in CDCl₃ were even more downfield than those of 3, while proton H_a showed similar chemical shift as that of 2. Taken together, these results suggest that amide NH_c in 1–4 and NH_b in 3 and 4 form intramolecular hydrogen bonds, whereas amide NH_a in both 2 and 4 is solvent accessible. The above results also suggested that the size of the amide groups at both ends has little effect on the formation of intramolecular hydrogen bonds.

Diamide 2 and triamide 4 turned out to be highly crystalline compounds. The X-ray structures of both compounds are shown in Figure 1. Compound 2 adopted a novel β N–O turn structure characterized by a nine-membered-ring hydrogen bond between C= O_i and NH_{*i*+2}, which was further stabilized by another sixmembered-ring hydrogen bond between NH_{*i*+2} and NO_{*i*+1}. The N–O bond was anti to the C_{α}-C_{β} bond with a 172° dihedral angle \angle NOC_{β}C_{α}.

Figure 1b shows a well-defined helical structure of **4**. The helix was composed of two consecutive nine-membered-ring intramolecular hydrogen bonds, i.e., two β N–O turns. The hydrogenbonding distance between NH_{*i*+2} and O=C_{*i*} was 1.93 Å for the first β N–O turn and 2.29 Å for the second turn. The shorter NH• ••O=C distance in the first hydrogen bond reflected the higher acidity of an aminoxy amide NH compared to a normal amide NH. In both β N–O turns, the N–O bond was anti to the C_{α}–C_{β} bond with similar dihedral angle \angle NOC_{β}C_{α} (170° and 174°). The amide carbonyl group at position *i* + 2 was twisted +65.9° from that at *i* position, suggesting a novel 1.7₉ helix. Similar to the 1.8₈ helix found in peptides of D- α -aminoxy acids,^{13a} the side chains pointed in the lateral directions of the helix. However, the distance between α -carbons at *i* and *i* + 2 positions of 1.7₉ helix was longer (7.1 Å) than that in the 1.8₈ helix (6.5 Å).

^{*} Corresponding author. E-mail: yangdan@hku.hk.

Figure 1. X-ray structures of (a) diamide 2 and (b) triamide 4.

Figure 2. NOEs observed in a 5 mM solution of diamide 2 and triamide 4 in CDCl₃ at room temperature (s, strong NOE; m, medium NOE).

A summary of the observed NOEs in 2D NOESY spectra¹⁴ of diamide 2 and triamide 4 in CDCl₃ at 5 mM are shown in Figure 2. Both molecules exhibited the same NOE pattern: medium nuclear Overhauser effects (NOEs) between NH_i and $C_{\beta}H_i$ but strong NOEs between NH_{i+1} and $C_{\beta}H_i$. The fact that no longer-range NOE was observed suggests that both molecules prefer extended secondary structures. The distance between NH_i and $C_{\beta}H_i$ and that between NH_{i+1} and $C_{\beta}H_i$ in the X-ray structure matched well with the NOE pattern observed for 2 and 4. This indicated a close correlation between the solid-state conformation and the solution conformation.

In summary, by extending the backbone of α -aminoxy acids to β -aminoxy acids, we have discovered a new class of foldamers that form novel β N–O turns and helices. Given that β -aminoxy acids have more backbone substitution patterns, it will be interesting to explore the potential of other β -aminoxy acids as foldamers.

Acknowledgment. This work was supported by The University of Hong Kong and Hong Kong Research Grants Council. D.Y. acknowledges the Bristol-Myers Squibb Foundation for an Unrestricted Grant in Synthetic Organic Chemistry and the Croucher Foundation for a Croucher Senior Research Fellowship Award. We thank Professor Yun-dong Wu and Dr. Shi-Wei Luo for helpful discussion.

Supporting Information Available: Preparation and characterization data for 1-4; ¹H NMR dilution data and DMSO- d_6 addition data for 1-3; 2D NOESY spectra for 2 and 4; X-ray structural analysis of 2 and 4, containing tables of atomic coordinates, thermal parameters, bond lengths, and angles (PDF); X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs. org.

References

- (1) For recent reviews, see: (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (c) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015.
- (2) For recent examples on β-peptides, see: (a) Raguse, T. L.; Lai, J. R.; LePlae, P. R.; Gellman, S. H. Org. Lett. 2001, 3, 3963. (b) Lee, H.-S.; Syud, F. A.; Wang, X.-F.; Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 7701. 7721. (c) Umezawa, N.; Gelman, M. A.; Haigis M. C.; Raines, R. T.; Gellman, S. H. J. Am. Chem. Soc. **2002**, *124*, 368. (d) Daura, X.; Gademann, K.; Schäfer, H.; Jaun, B.; Seebach, D.; Van Gunsteren, W. F J. Am. Chem. Soc. 2001, 123, 2393. (e) Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. J. Med. Chem. 2001, 44, 2460. (f) Claridge, T. D. W.; Goodman, J. M.; Moreno, A.; Angus, D.; Barker, S. F.; Taillefumier, C.; Watterson, M. P.; Fleet, G. W. J. *Tetrahedron Lett.* 2001, 42, 4251. (g) Arvidsson, P. I.; Rueping, M.; Seebach, D. Chem. Commun. 2001, 649. (h) Seebach, D.; Schreiber, J. V.; Arvidsson, P. I.; Frackenpohl, J. Helv. Chim. Acta 2001, 84, 271. (i) Le, H. C.; Hintermann, T.; Wessels, 2924. (1) Cheng, R. P.; DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 5162. (m) Motorina, I. A.; Huel, C.; Quiniou, E.; Mispelter, J.; Adjadj, E.; Grierson, D. S. J. Am. Chem. Soc. 2001, 123, 8. (n) Günther, R.; Hofmann, H.-J.; Kuczera, K. J. Phys. Chem. B 2001, 105, 5559.
- (3)Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D. Helv. Chim. Acta 1998. 81. 983
- (4) Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998. 120, 8569.
- (5) Hanessian, S.; Luo, X.; Schaum, R. Tetrahedron Lett. 1999, 40, 4925.
- (6) Seebach, D.; Brenner, M.; Rueping, M.; Schweizer, B.; Jaun, B. Chem. Commun. 2001, 207.
- Brenner, M.; Seebach, D. Helv. Chim. Acta 2001, 84, 1181.
- Seebach, D.; Brenner, M.; Rueping, M.; Jaun, B. Chem. Eur. J. 2002, 8, (8)573
- (9) Brenner, M.; Seebach, D. Helv. Chim. Acta 2001, 84, 2155.
- Hagihara, M.; Anthony, N. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6568.
- (11) Woll, M. G.; Lai, J. R.; Guzei, I. A.; Taylor, S. J. C.; Smith, M. E. B.;
- Wolt, M. G.; Lai, J. R.; Guzer, I. A.; Taylor, S. J. C.; Shihul, M. E. B.;
 Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 11077.
 (a) Yang, D.; Ng, F.-F.; Li, Z.-J.; Wu, Y.-D.; Chan, K. W. K.; Wang,
 D.-P. J. Am. Chem. Soc. 1996, 118, 9794. (b) Yang, D.; Li, B.; Ng, F.-F.;
 Yan, Y.-L.; Qu, J.; Wu, Y.-D. J. Org. Chem. 2001, 66, 7303. (12)
- (a) Yang, D.; Qu, J.; Li, B.; Ng, F.-F.; Wang, X.-C.; Cheung, K.-K.; Wang, D.-P.; Wu, Y.-D. J. Am. Chem. Soc. **1999**, *121*, 589. (b) Wu, Y.-D.; Wang, D.-P.; Chan, K. W. K.; Yang, D. J. Am. Chem. Soc. 1999, 121, 11189. (c) Peter, C.; Daura, X.; Van Gunsteren, W. F. J. Am. Chem. Soc. 2000, 122 7461
- (14) See Supporting Information.

JA026966N